Hermitian form ‹matrix› - определение. Что такое Hermitian form ‹matrix›
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Hermitian form ‹matrix› - определение

MATRIX EQUAL TO ITS CONJUGATE-TRANSPOSE
Hermitian matrices; Hermitian sequence; Hermitian vector; Hermite matrix; Self adjoint matrix; ⊹; Hermitian conjugate matrix

Hermitian matrix         
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and :
Conjugate transpose         
COMPLEX MATRIX A* OBTAINED FROM A MATRIX A BY TRANSPOSING IT AND CONJUGATING EACH ENTRY
Adjoint matrix; Hermitean conjugate; Tranjugate; Transpose conjugate; Adjoint Matrix; Conjugate transpose matrix; Hermitian Transpose; Hermitian transpose; Hermitian tranpose; Conjugate matrix; Conjugate Transpose; Conjugate imaginary; Complex transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol{A} is an n \times m matrix obtained by transposing \boldsymbol{A} and applying complex conjugate on each entry (the complex conjugate of a+ib being a-ib, for real numbers a and b). It is often denoted as \boldsymbol{A}^\mathrm{H} or \boldsymbol{A}^*.
EP matrix         
MATRIX THAT COMMUTES WITH ITS MOORE-PENROSE INVERSE
EP matrices; RPN matrix; Range-Hermitian matrix; Range-symmetric matrix
In mathematics, an EP matrix (or range-Hermitian matrix or RPN matrix) is a square matrix A whose range is equal to the range of its conjugate transpose A*. Another equivalent characterization of EP matrices is that the range of A is orthogonal to the nullspace of A.

Википедия

Hermitian matrix

In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:

or in matrix form:

Hermitian matrices can be understood as the complex extension of real symmetric matrices.

If the conjugate transpose of a matrix A {\displaystyle A} is denoted by A H , {\displaystyle A^{\mathsf {H}},} then the Hermitian property can be written concisely as

Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A H = A = A , {\displaystyle A^{\mathsf {H}}=A^{\dagger }=A^{\ast },} although in quantum mechanics, A {\displaystyle A^{\ast }} typically means the complex conjugate only, and not the conjugate transpose.